February 2005
Trends in High Performance Computing
Jim Gray, Microsoft
David T. Liu, University of California at Berkeley
Maria Nieto-Santisteban, Johns Hopkins University
Alex Szalay, Johns Hopkins University
David DeWitt, University of Wisconsin
Gerd Heber, Cornell University

New data-analysis methods

The demand for tools and computational resources to perform scientific data-analysis is rising even faster than data volumes. This is a consequence of three phenomena: (1) More sophisticated algorithms consume more instructions to analyze each byte, (2) Many analysis algorithms are super-linear, often needing N^2 or N^3 time to process N data points, and (3) IO bandwidth has not kept pace with storage capacity. In the last decade, while capacity has grown more than 100-fold, storage bandwidth has improved only about 10-fold.

These three trends: algorithmic intensity, nonlinearity, and bandwidth-limits mean that the analysis is taking longer and longer. To ameliorate these problems, scientists will need better analysis algorithms that can handle extremely large datasets with approximate algorithms (ones with near-linear execution time), and they will need parallel algorithms that can apply many processors and many disks to the problem to meet cpu-density and bandwidth-density demands.

Science centers

These peta-scale datasets required a new work style. Today the typical scientist copies files to a local server and operates on the datasets using his own resources. Increasingly, the datasets are so large, and the application programs are so complex, that it is much more economical to move the end-user’s programs to the data and only communicate questions and answers rather than moving the source data and its applications to the user's local system.

Science data centers that provide access to both the data and the applications that analyze the data are emerging as service stations for one or another scientific domain. Each of these science centers curates one or more massive datasets, curates the applications that provide access to that dataset, and supports a staff that understands the data and indeed is constantly adding to and improving the dataset. One can see this with the SDSS at Fermilab, BaBar at SLAC, BIRN at SDSC, with Entrez-PubMed-GenBank at NCBI, and with many other datasets across other disciplines. These centers federate with others. For example BaBar has about 25 peer sites and CERN LHC expects to have many Tier1 peer sites. NCBI has several peers, and SDSS is part of the International Virtual Observatory.

The new work style in these scientific domains is to send questions to applications running at a data center and get back answers, rather than to bulk-copy raw data from the archive to your local server for further analysis. Indeed, there is an emerging trend to store a personal workspace (a MyDB) at the data center and deposit answers there. This minimizes data movement and allows collaboration among a group of scientists doing joint analysis. These personal workspaces are also a vehicle for data analysis groups to collaborate. Longer term, personal workspaces at the data center could become a vehicle for data publication, posting both the scientific results of an experiment or investigation along with the programs used to generate them in public read-only databases.

Many scientists will prefer doing much of their analysis at data centers because it will save them having to manage local data and computer farms. Some scientists may bring the small data extracts "home" for local processing, analysis and visualization, but it will be possible to do all the analysis at the data center using the personal workspace.

When a scientist wants to correlate data from two different data centers, then there is no option but to move part of the data from one place to another. If this is common, the two data centers will likely federate with one another to provide mutual data backup since the data traffic will justify making the copy.

Peta-scale data sets will require 1,000-10,000 disks and thousands of compute nodes. At any one time some of the disks and some of the nodes will be broken. Such systems require a mechanism in place to protect against data loss, and provide availability even with a less than full configuration — a self-healing system is required. Replicating the data in science centers at different geographic locations is implied in the discussion above. Geographic replication provides both data availability and protects against data loss. Within a data center one can combine redundancy with a clever partitioning strategy to protect against failure at the disk controller or server level. While storing the data twice for redundancy, one can use different organizations (e.g. partition by space in one, and by time in the other) to optimize system performance. Failures should be automatically recovered from the redundant copies with no interruption to database access, much as RAID5 disk arrays do today.

All these scenarios postulate easy data access, interchange and integration. Data must be self-describing in order to allow this. This self-description, or metadata, is central to all these scenarios; it enables generic tools to understand the data, and it enables people to understand the data.

Pages: 1 2 3 4 5 6 7 8

Reference this article
Gray, J., Liu, D., Nieto-Santisteban, M., Szalay, A., DeWitt, D., Heber, G. "Scientific Data Management in the Coming Decade," CTWatch Quarterly, Volume 1, Number 1, February 2005. http://www.ctwatch.org/quarterly/articles/2005/02/scientific-data-management/

Any opinions expressed on this site belong to their respective authors and are not necessarily shared by the sponsoring institutions or the National Science Foundation (NSF).

Any trademarks or trade names, registered or otherwise, that appear on this site are the property of their respective owners and, unless noted, do not represent endorsement by the editors, publishers, sponsoring institutions, the National Science Foundation, or any other member of the CTWatch team.

No guarantee is granted by CTWatch that information appearing in articles published by the Quarterly or appearing in the Blog is complete or accurate. Information on this site is not intended for commercial purposes.