March 2008
Urgent Computing: Exploring Supercomputing's New Role
Paul Tooby
Dong Ju Choi
Nancy Wilkins-Diehr, San Diego Supercomputer Center


Somewhere in Southern California a large earthquake strikes without warning, and the news media and the public clamor for information about the temblor -- Where was the epicenter? How large was the quake? What areas did it impact?

A picture is worth a thousand words – or numbers – and the San Diego Supercomputer Center (SDSC) 1 at UC San Diego is helping to provide the answers. Caltech computational seismologist Jeroen Tromp can now give the public movies that tell the story in a language that’s easy to understand, revealing waves of ground motion spreading out from the earthquake -- and he can deliver these movies in just 30 minutes with the help of a supercomputer at SDSC. But he can’t do it by submitting a job to a traditional computing batch queue and waiting hours or days for the results.

Figure 1

Figure 1. Frame from a movie of a “virtual earthquake” simulation of the type that will be run on SDSC’s new OnDemand system to support event-driven science. The movie shows the up-and-down velocity of the Earth’s surface as waves radiate out from a magnitude 4.3 earthquake centered near Beverly Hills, California. Strong blue waves indicate the surface is moving rapidly downward, while red/orange waves indicate rapid upward motion. Courtesy of Joroen Tromp, ShakeMovie, Caltech.

Tromp is an example of the new users in today’s uncertain world who require immediate access to supercomputing resources 2. To meet this need, SDSC has introduced OnDemand, a new supercomputing resource that will support event-driven science 3.

“This is the first time that an allocated National Science Foundation (NSF) TeraGrid supercomputing resource will support on-demand users for urgent science applications,” said Anke Kamrath, director of User Services at SDSC. “In opening this new computing paradigm we’ve had to develop novel ways of handling this type of allocation as well as scheduling and job handling procedures.”

Pages: 1 2 3

Reference this article
Tooby, P., Ju Choi, D., Wilkins-Diehr, N. "Supercomputing On Demand: SDSC Supports Event-Driven Science," CTWatch Quarterly, Volume 4, Number 1, March 2008. http://www.ctwatch.org/quarterly/articles/2008/03/supercomputing-on-demand-sdsc-supports-event-driven-science/

Any opinions expressed on this site belong to their respective authors and are not necessarily shared by the sponsoring institutions or the National Science Foundation (NSF).

Any trademarks or trade names, registered or otherwise, that appear on this site are the property of their respective owners and, unless noted, do not represent endorsement by the editors, publishers, sponsoring institutions, the National Science Foundation, or any other member of the CTWatch team.

No guarantee is granted by CTWatch that information appearing in articles published by the Quarterly or appearing in the Blog is complete or accurate. Information on this site is not intended for commercial purposes.